números conjugados complexos - definição. O que é números conjugados complexos. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é números conjugados complexos - definição

NÚMERO QUE PODE SER ESCRITO NA FORMA A + BI, EM QUE A E B SÃO NÚMEROS REAIS E I A UNIDADE IMAGINÁRIA
Números Complexos; Números complexos; Numeros complexos; Numero complexo
  • 189x189px
  • 182x182px
  • miniaturadaimagem
  • 220x220px
  • 220x220px
  • 220x220px

Número complexo hiperbólico         
ELEMENTO DA ÁLGEBRA ASSOCIATIVA COMUTATIVA REAL ℝ[J] / (J² − 1), ISTO É, OS REAIS COM A ADIÇÃO DE UMA OUTRA RAIZ QUADRADA DE +1
Números complexos hiperbólicos
Na matemática, os números complexos hiperbólicos são uma extensão bidimensional dos números reais definidos de forma análoga aos números complexos.P.
Lei dos grandes números         
TEOREMA FUNDAMENTAL DA PROBABILIDADE
Grandes números; Lei dos Números Grandes; Lei dos números grandes
A lei dos grandes números (LGN) é um teorema fundamental da teoria da probabilidade, que descreve o resultado da realização da mesma experiência repetidas vezes. De acordo com a LGN, a média aritmética dos resultados da realização da mesma experiência repetidas vezes tende a se aproximar do valor esperado à medida que mais tentativas se sucederem.
Livro dos Números         
QUARTO LIVRO DA BÍBLIA, COMPOSTO DE 36 CAPÍTULOS
Livro de Números
thumb|400px|[[Cohen|Sacerdotes (kohanim), levitas e utensílios do templo.]]

Wikipédia

Número complexo

Em matemática, um número complexo é um elemento de um sistema numérico que contém os números reais e um elemento específico denotado i, chamado de unidade imaginária, e que satisfaz a equação i2 = −1.

O fato de um número negativo não ter raiz quadrada parece ter sido claro para os matemáticos que se depararam com esta questão, até a concepção do modelo dos números complexos. Um número complexo é um número z {\displaystyle z} que pode ser escrito na forma z = x + y i {\displaystyle z=x+yi} , sendo x {\displaystyle x} e y {\displaystyle y} números reais e i {\displaystyle i} denota a unidade imaginária. Esta tem a propriedade i 2 = 1 , {\displaystyle i^{2}=-1,} sendo que x {\displaystyle x} e y {\displaystyle y} são chamados respectivamente parte real e parte imaginária de z {\displaystyle z} .

O conjunto dos números complexos, denotado por C {\displaystyle \mathbb {C} } , contém o conjunto dos números reais. Munido de operações de adição e multiplicação obtidas por extensão das operações de mesma denominação nos números reais, adquire uma estrutura algébrica denominada corpo algebricamente fechado, sendo que esse fechamento consiste na propriedade que tem o conjunto de possuir todas as soluções de qualquer equação polinomial com coeficientes naquele mesmo conjunto (no caso, o conjunto dos complexos). O conjunto dos números complexos também pode ser entendido por seu isomorfismo com um espaço vetorial sobre R {\displaystyle \mathbb {R} } , o conjunto dos reais.

Além disso, a cada número complexo podemos atribuir um número real positivo chamado módulo, dado por:

| z | = x 2 + y 2 . {\displaystyle |z|={\sqrt {x^{2}+y^{2}}}.}

O módulo de z, visto como uma norma no espaço vetorial, conduz a um espaço normado topologicamente completo.[carece de fontes?]

Os números complexos são representados geometricamente no plano complexo. Nele, representa-se a parte real, x , {\displaystyle x,} no eixo horizontal e a parte imaginária, y , {\displaystyle y,} no eixo vertical.

Os números complexos são utilizados em várias áreas do conhecimento, tais como engenharia, eletromagnetismo, física quântica, teoria do caos, processamento de sinais, teoria de controle, dinâmica de fluidos, cartografia, análise de vibração, além da própria matemática, em que são estudadas análise complexa, álgebra linear complexa, álgebra de Lie complexa, com aplicações em resolução de equações algébricas e equações diferenciais.

Em algumas situações, é comum a troca da letra i {\displaystyle i} pela letra j , {\displaystyle j,} devido ao frequente uso da primeira como indicação de corrente elétrica.